vanja_y (vanja_y) wrote,


По случаю продления стипендии решил себя побаловать покупкой "Higher Operads, Higher Categories" Лейнстера. Не могу теперь на неё нарадоваться. Вот например склейка цитат:

Let D be a free monoidal category containing a monoid, in the sense that for any monoidal category (E, ⊗, I) there is an equivalence

MonCat wk ((D,+,0),(E,⊗, I)) ≅ Mon(E,⊗,I)

between the category of weak monoidal functors D → E and the category of monoids in E.
Now suppose E is a category with finite products. Then there is an isomorphism of categories

MonCatcolax ((D,+,0), (E,x,1)) ≅ [Δop ,E]

between the category of colax functors D → E and the category of simplicial objects in E.
It could argued that if (E,⊗, I) is general monoidal category, it would be better to define a simplicial object in E not as a functor Δop → E, but rather as a colax monoidal functor D → E. For example, it was colax monoidal version that made possible the definition of homotopy differential graded algebra (здесь он ссылается на два своих препринта math.QA/9912084 и math.QA/0002180 ).
  • Post a new comment


    default userpic

    Your reply will be screened

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.